

Jaydeep R. Pillai¹, Michael R. Needham², Mark D. Branson², David A. Randall² ¹Department of Physics, University of Illinois Urbana-Champaign; ²Department of Atmospheric Sciences, Colorado State University

Introduction

Our goal is to create a simple, conceptual model to describe how deep and stratocumulus convection influence the interactions of the tropical and subtropical climate system. To do this, we made three key assumptions:

- 1. Weak Temperature Gradient
- 2. Coupling through a Walker Cell
- 3. Slab Ocean

The model consists of a tropical and subtropical regime. The tropical domain is driven by the SST, while the subtropical domain is controlled by the mixed layer moist static energy and SST.

New Entrainment Parameterization

 $w_e^3 = \epsilon_0 G_0 + \epsilon_1 G_1 w_e$

- Entrainment is shown to slow down when the inversion is stronger
- Entrainment speeds up when radiative cooling is stronger

Coupling Process

Coupling of Tropics to Subtropics is driven by radiative heating in tropics and radiative cooling in subtropics.

Integrated Subtropical Cooling

$$\int_{Z_{B_{+}}}^{Z_{T}} Q_{ST} dz = R_{B_{+}} - R_{TOA} + S_{TOA} - S_{B_{+}}$$

Integrated Tropical Heating

 $\int_{T} Q_{TR} dz = L P + R_{SFC} - R_{TOA} + S_{TOA} - S_{SFC}$

A Numerical Model for Tropical and Subtropical Interactions

Conclusions

Precipitation rate in tropics is an exponential function of column relative humidity (CRH) (Bretherton et al. 2004):

$$P = P_0 e^{\alpha_d CRH}$$

Deep convection couples the temperature and moisture soundings so that when the CRH approaches 1, the lapse rate approaches the moist adiabat.

Subtropical boundary layer depth is in equilibrium when:

$$E = \frac{M}{\sigma_{ST}}$$

Radiatively driven entrainment tries to deepen the boundary layer and dries it out.

Conclusions

Our model accurately simulates the tropical and subtropical domains when separate. More work is needed to couple the two. Future studies will include CO₂ forcing to study the stratocumulus cloud response, following Schneider et al. 2019.

References

1. Charney, J. G. (1963). A note on large-scale motions in the tropics. Journal of the143Atmospheric Sciences,20(6), 607–609

2. Jenney, A. M., Randall, D. A., & Branson, M. (2020). Understanding the response145of tropical ascent to warming using an energy balance framework. Journal of146Advances in Modeling Earth Systems, 12(6), e2020MS002056.

3. Schneider, T., Kaul, C. M., & Pressel, K. G.(2019). Possible climate transitions160 from breakup of stratocumulus decks under greenhouse warming. Nature Geo-161science,12(3), 163–167.

Acknowledgements

This work has been supported by the National Science Foundation Research Experiences for Undergraduates Site in Earth System Science at Colorado State University under the cooperative agreement No. AGS-1950172.

